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ABSTRACT 
One such complex algorithm is Singular-value Decomposition (SD) which is an important algorithm with 

applications in varied domains of signal processing such as direction estimation, spectrum analysis and systems 

identification. It is a generalized extension to the eigen-decomposition for non-square matrices and is hence of 

great importance, particularly for subspace based algorithms in signal processing. But SD is known to be a very 

complicated algorithm with computational complexity ~O (N3) (for a N x N square matrix). For real-time 

computation of such a complex algorithm the use of a parallel and direct mapped hardware solution is indeed 

desired.  

 

The Singular Value Decomposition (SD) is an important matrix factorization with applications in signal 

processing, image processing and robotics. It is generally acknowledged that the SD is the only generally reliable 

method for determining the rank of a matrix numerically. The SD is a very useful tool, for example, in analyzing 

data matrices from sensor arrays for adaptive beamforming, and low rank approximations to matrices in image 

enhancement. The wide variety of applications for the SD coupled with its computational complexity justifies 

dedicating hardware to this computation. Designed 2X2 CRDC based SD processor can be used as basic building 

block for an array of processors of N X N matrix. 

 Hardware and software resources  

1. OS: Windows 9x or upper 

2. RAM: Minimum 512 MB 

3. Programming Language: XILINX 8.6 or upper  

4. Tools: MODELSIM 5.2 or upper  

5. Processor: AMD Sempron 1.6 GHz/ Intel P4 2.8 GHz.        

 

 

INTRODUCTION 
Keeping in mind the useful applications of SD with associated complexity involved in its computation motivates 

us towards an efficient hardware implementation. So, in this project design and implementation of a 2X2 matrix 

SD processor is presented. The problems which come on the way and the solutions for those are explained in next 

section. 

 

In Digital Signal Processing (DSP) there are many complex algorithms for which an efficient hardware 

implementation is required in real time applications. One such complex algorithm is Singular-value 

Decomposition (SD)[1] which is an important algorithm with applications in varied domains of signal processing 

such as direction estimation, spectrum analysis and systems identification. It is a generalized extension to the 

eigen-decomposition for non-square matrices and is hence of great importance, particularly for subspace based 

algorithms in signal processing. But SD is known to be a very complicated algorithm with computational 

complexity ~O(N3) (for a NxN square matrix). For real-time computation of such a complex algorithm the use of 

a parallel and direct mapped hardware solution is indeed desired.  
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IMPORTANCE 
The Singular Value Decomposition (SD) is an important matrix factorization with applications in signal 

processing, image processing and robotics. It is generally acknowledged that the SD is the only generally reliable 

method for determining the rank of a matrix numerically. The SD is a very useful tool, for example, in analyzing 

data matrices from sensor arrays for adaptive beamforming [2], and low rank approximations to matrices in image 

enhancement [3]. The wide variety of applications for the SD coupled with its computational complexity justifies 

dedicating hardware to this computation. Designed 2X2 CRDC based SD processor can be used as basic building 

block for an array of processors of N X N matrix. 

 

LINE OF APPROACH 
The complexity of SD computation and its real-time applications were the inspiration behind efficient hardware 

implementation. In SD processor time consuming operations like multiplication, square root and division are 

eliminated by the use of CRDC algorithm. CRDC algorithm only requires simple shift and additions which 

efficiently maps SD processor. 

 

Here for implementation of a 2X2 matrix CRDC based SD processor, parallel diagonalization architecture has 

been selected in which two CRDIC engines are utilized. Two CRDC engines operate parallely to compute SD of 

a given matrix in four steps. If only one CRDC engine had been used then it would have taken almost double time. 

Thus parallel pipelined CRDC architecture greatly shortens the computation time. Further Kogge-Stone adders 

are implemented in CRDC engines to speed up the addition and subtraction process. Kogge-Stone adders are 

known as the fastest adder and are from the family of parallel prefix adders. The net result is a 2X2 CRDC based 

SD processor with pipelined architecture and high speed Kogge-Stone adder in its CRDC engine to make the 

processor achieve maximum parallelism. The processor so designed is also able to calculate sine, cosine and 

inverse tangent values as these are basic CRDC functions. So the processor can be useful in those applications 

also where real time trigonometric values are needed to be calculated.    

 

Basic CRDC architecture 

An iterative CRDC architecture can be obtained simply by duplicating each of the three difference equations in 

hardware as shown in Figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The decision function, id  is driven by the sign of the y or z register depending on whether it is operated in rotation 

( iz ) or vectoring mode ( yi ). In operation, the initial values are loaded via multiplexers into the x, y and z 

registers. Then on each of the next n clock cycles, the values from the registers are passed through the shifters and 

adders-sub tractors and the results placed back in the registers. The shifters are modified on each iteration to cause 

the desired shift for the iteration. Likewise, the ROM (Look-up table) address is incremented on each iteration so 

that the appropriate elementary angle value is presented to the z adder-sub tractor. 

 

Singular-value Decomposition (SD) 

In linear algebra, the singular value decomposition (SD) is an important factorization of a rectangular real or 

complex matrix, with several applications in signal processing and statistics. The Singular-value Decomposition 

(SD) of a matrix is an important computationally complex algorithm which can benefit from the recent advances 

in parallel architectures and VLSI. A VLSI processor array for the SD would have applications in real-time signal 

processing and image processing. 
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A singular value decomposition of a PP matrix M  is 
TVUM  , 

A 22  SD can be described as 
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Where 1  and 2 are the Eigen values.  l  and 
r are the left and right rotation angles respectively. The rotation 

matrix is, 
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If CRDC processors are used, then the rotation parameters can be calculated from the inverse tangents of the 

elements of M. The rotation angles are found explicitly, without penalty, since the inverse tangent function is a 

primitive CRDC operation. The traditional matrix-vector multiplication can also be replaced since vector rotations 

are primitive CRDC operations. The diagonalization of M can be performed by treating M as a pair of vectors and 

using the rotation angles to transform M. The computation of these vector rotations and inverse tangents can be 

performed efficiently by the CRDC algorithms.                   

 

Parallel Diagonalization SD  

The Parallel Diagonalization Method is based on determining SUM  and DIFF  directly. This results in reduction 

in time and area necessary for a 22  SD processor as shown below in figure 3. From the block diagram elements 

of the matrix are provided to both CRDC modules which calculate arctan values ( SUM and DIFF ) then these 

values are added and subtracted to obtain angles ( l  and r ). Finally, these angles are applied to the CRDC block 

to calculate sin/cos of the l  , r using CRDC processor. Whole process has also been shown in algorithmic form 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: CRDC SD Parallel Diagonalization Method 

 

The algorithm applying the parallel diagonalization method becomes: 

CRDC SD Parallel (): 

                  Begin 

Parallel do },,,{ adadbccb  , 

Parallel do begin 
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Find )( lrSUM   ; 

Find )( lrDIFF   ; 

end 

Parallel do separate r , l ; 

Apply r , l  using CRDC two-sided Rotation module; 

Parallel find sine/cosine of r , l  using CRDC processors 

                end 

System Block Diagram : -  

 

The top-level system block diagram of the SD processor based on CRDC algorithm is as shown in figure  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: System Block Diagram 

 

In system block diagram, there are four sub-blocks as listed below: 

[1] CRDC Control 

[2] CRDC Engine 

[3] 32 bit Kegged –Stone adder 

[4] Top level wrapper (System FSM) 

 

First of all, Top level wrapper block has two states SYSFSM_IDLE and SYSFSM_BUSY which tells whether 

SD Control module is busy or not and if it can take any new task. When any new task arrives CRDC Control 

generates appropriate control signals for CRDC1 and CRDC2 engines. Now CRDC engines perform the task 

given to them by CRDC Control and after computation return the output data back to the CRDC Control block. 

Top level wrapper is also used to integrate all the units in one unit.  

 

Simulation Results And Analysis  

In this unit simulation results and synthesis report of each block is shown. Analysis of results has also been done. 

Design is written in Verilog HDL. Tools used for simulation and syntheses of the design are: 

Compiler: Model Sim XE 6.2g 

Synthesis: XILINX ISE 9.2i 

 

Simulation results of Adder Block 

Kogge – Stone adder is designed for 32-bit addition. In this block two 32-bit input data a _in and b _in are given 

along with the control signal add _n sub which determines whether to add (addendum=1) them or subtract 

(addendum=0). Sum is given as output. A simulation result is given in figure . 
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Figure :- Simulation of  Kogge -Stone adder block 

 

Simulation result of CRDC Block 

CRDC engine is the main data processing block. This block basically calculates sin/cos and inverse tan values 

when configured properly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: Simulation of CRDC engine for sin/cos of 0 degree 

 

CONCLUSION AND FUTURE SCOPE 
Conclusion 

In linear algebra, the singular value decomposition (SD) is an important factorization of a rectangular real or 

complex matrix, with several applications in signal processing and statistics.  

 

A 2X2 CRDC based SD processor was designed and successfully simulated. CRDC algorithm was used to 

simplify the computational complexities of SD calculation. Apart from calculating the SD of a 2x2 matrix the 

processor is able to calculate basic CRDC functions also that are sine/cosine, inverse tan 

 

Achievements 

    1.Timing Analysis 

       To increase the frequency for the worst-case path, the following schemes were implemented. 

    2.Kogge-Stone Adder 

        Although the synthesis tool (Design Vision) supports the carry-look-ahead adder by default, a parallel- prefix 

tree adder “Kegged-Stone” was implemented. 

Delay for a 32 bit Carry Look Ahead Adder: delay ≈ 2log2 (n) 

Delay for a 32 bit Kogge Stone Adder:          delay ≈ log2 (n) 

 

Where n is no. of bits. 

This helps in reducing the delay through the critical path since the CRDC engine for the SD uses Adders at various 

stages. 

 

FUTURE SCOPE 
After the CRDC Control block,we can design APB (Advance Peripheral Bus) interface for enabling the processor 

to communicate with outside world. APB interface has 9 signals which are used to enter the input matrix data and 

the Control data. After calculations, output data are retrieved from their register locations. Thus, CRDC based SD 
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processor can be used as a coprocessor and this APB interface works as a bridge between main processor and 

coprocessor (SD processor). 
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